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Abstract

The concept of fixed point in metric space under specific contraction mappings

is demonstrated by many researchers. In the present dissertation, we discuss the

notion of (Fw,R)g contractions and obtain coincidence points, fixed points, unique

fixed point and common fixed point results for such contractions in the setting of

metric spaces. We also prove some consequences in ordered metric space using the

same idea. To elaborate the theorem we also prove an example. Our results will

be valuable in metric space using (Fw,R)g contractions.
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Chapter 1

Introduction

Mathematics has an important role in scientific knowledge that’s why it is called

mother of sciences. Mathematics has a lot of applications for humans in every

field of life. Mathematics is divided into many branches and each branch has its

significance. One of the important branch of mathematics is known as functional

analysis. Fixed point theory is an important concept in functional analysis. Fixed

point theory provides sufficient conditions for the existence of solution of a prob-

lem. Fixed point theory has countless appeals in the area of numerical analysis,

polynomial interpolation, error estimation and finite difference methods.

Banach Contraction Principle (BCP) [1] is to be considered the most valuable

outcome in metric fixed point theory.

Poincare [2] worked on fixed point theory first time. Later on Brouwer [3] consid-

ered the equation f(a) = a and established the solution of this equation by proving

a fixed point theorem in 1912. He also worked to prove fixed point result for the

shapes like square and sphere etc. He has also established fixed point results in

various dimensions [3].

In 1922, a notable mathematician Banach [4] demonstrated a significant fixed

point result in the area of functional analysis acknowledge as BCP. This result is

declared to be the most fundamental consequence in the area of fixed point theory.

BCP is stated as: “A contraction mapping in a complete metric space has a unique

fixed point.” The two remarkable applications come from this principle. The first

1



Introduction 2

one is that it guarantees the uniqueness and existence of fixed point. The second

one is that it provides an approach to determine the fixed point of mapping. Due

to its extensive application potential, this concept has been observed in various

forms over the year [5–8].

This theorem occupies a significant role in the area of mathematical analysis. A

number of researchers in mathematics are interested in BCP by virtue of its de-

scription and generality. Presic [9] and Kannan [10] proved his contraction map-

ping concept. A lot of contractions have been established after the BCP, but we

will discuss only those which are used in our work.

The concept of F-contractions was introduced by Wardowski [11]. He proved some

new fixed point results for such kind of contractions. He build these results in a

different way rather than traditional ways as done by many authors. Later on,

fixed points for F-contractions were proved by Secelean [12] using iterated func-

tion. Abbas [13] extended the work of Wardowski and established various results

of fixed points using F-contraction mapping.

The idea of (F,R)-contractions was established by Sawangsup et al. [14] and he

used this idea to demonstrate some fixed point consequences using binary rela-

tion. The idea of (F,R)-contractions was demonstrated by Imdad et al. [15]. In

present thesis, we studied the results presented in Alfaqih et al. [16] and we define

(Fw,R)g -contractions and prove a theorem similar to Alfaqih et al. for (Fw,R)g-

contractions.

Following are the details of work, which I have done throughout this thesis.

• Chapter 2: This chapter is about the basic concepts and definitions of metric

spaces and some examples which satisfy the properties of above spaces. Similarly

we have discussed BCP and some examples to support it.

Finally, we talk about some basic tools for F -contractions.

• Chapter 3: The paper “Relation Theoretic Coincidence and Common Fixed

Point Results under (F,R)g- Contractions” is reviewed.

• Chapter 4: This chapter emphasizes on the idea of (Fw,R)g -contractions and

focused on the extension of the results presented by Alfaqih et al. [16]. An example

is given to verify our result. Conclusion is given in last section.



Chapter 2

Preliminaries

In this chapter, we will discuss about the fundamental definitions, results and

examples which are used in subsequent chapters. The first section of this chapter

covers some basics of metric spaces with few examples. The second section consists

of Banach Contraction Principle. The third section consists of some basic tools

for F -contraction.

2.1 Metric Space

In mathematics, Euclidean distance is a straight line distance. However, this

distance can be other than the straight line like taxicab distance. In literature the

term “metric” is useful to deduce the concept of distance and the space endowed

with metric fulfilling few properties known as metric space. In 1906 Frachet [17]

prescribed the scheme of metric space as follows.

2.1.1. Metric Space [18]

“A metric space is a pair (X, d), where X is a set and d is a metric on X (or

distance function on X), that is, a function defined on X × X such that for all

x, y, z ∈ X we have:

1. d is real- valued, finite and nonnegative,

3
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2. d(x, y) = 0 if and only if x = y,

3. d(x, y) = d(y, x) (Symmetric Property),

4. d(x, y) ≤ d(x, z) + d(z, y) (Triangle Inequality).”

Following are examples of metric spaces.

Example 2.1.1.

Let K = R defined by usual metric

d(k, l) = |k − l|,

is a metric space.

2.1.2. Continuous Mapping [19]

“Let (X, d) be a metric space. A mapping T : X → X is said to be continuous at

a point x0 if for each ε > 0 there exists δ > 0 such that

d(Tx, Tx0) ≤ ε whenever d(x, x0) ≤ δ.”

Example 2.1.2.

Let K = R with usual metric d as stated in (2.1.1). Q : K → K defined by

Q(ζ) = ζ3 where ζ ∈ X.

Then Q satisfies the above definition.

2.1.3. Convergence of Sequence [18]

“A sequence {xn} in a metric space X = (X, d) is said to converge or to be

convergent if there is an x ∈ X such that

lim
n→∞

d(xn, x) = 0,

x is called the limit of {xn} and we write

lim
n→∞

xn = x,
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or simply

xn → x.

We say that xn converges to x or has the limit x. If xn is not convergent, it is said

to be divergent.”

Example 2.1.3.

Consider again the set R and d(η, ω) = |η − ω|, then the sequence {ηn = 1
n
} in X

is a convergent sequence.

2.1.4. Cauchy Sequence [18]

“A sequence {xn} in a metric space (X, d) is said to be a Cauchy sequence if for

each ε > 0 there exist N ∈ N such that

d(xn, xm) < ε ∀m,n > N.”

2.1.5. Complete Metric Space [18]

“If every Cauchy sequence in a metric space (X, d) converges to a point x ∈ X

then X is called a complete metric space.”

Example 2.1.4. [18]

Let X = R and closed interval [0, 1] in R is a complete metric space with usual

metric on R.

2.2 Banach Contraction Principle

Stefan Banach Proved BCP in 1922 in his doctoral dissertation. BCP is considered

as one of the basic result of fixed point theory. Many extensions has been made

by many authors.

2.2.1 Contraction Mappings

2.2.1.1. Contraction [19]

“Let X be a metric space, a mapping F : X → X is called a contraction if there
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exists k < 1 such that for any x, y ∈ X,

d(Fx, Fy) ≤ kd(x, y).

This contraction is also known as Banach contraction. Geometrically this means

that any points x and y have images that are closer together than these points x

and y; more precisely, the ratio d(Fx, Fy)|d(x, y) does not exceed a constant α

which is strictly less than 1. This contraction is also known as Banach contraction.”

Example 2.2.1.1.

Let K = [0, 1], d(ζ, ω) = |ζ − ω| and Q : K → K given by

Q(ζ) =
1

3 + ζ
,

then it is a contraction mapping.

Proof. Since

Q(ζ) =
1

3 + ζ
,

then,

d(Qζ,Qω) = d

(
1

3 + ζ
,

1

3 + ω

)
,

=

∣∣∣∣ 1

3 + ζ
− 1

3 + ω

∣∣∣∣ ,
=

∣∣∣∣ 3 + ω − 3− ζ
(3 + ζ)(3 + ω)

∣∣∣∣ ,
=

∣∣∣∣ −(ζ − ω)

(3 + ζ)(3 + ω)

∣∣∣∣ ,
≤ |ζ − ω|

(3)(3)
,

≤ 1

9
d(ζ, ω),

therefore Q is a contraction with α =
1

9
.



Preliminaries 7

Example 2.2.1.2.

Let K = R and d(η, ω) = |η − ω|. Define Q : K → K by

Q(η) =
η

5
+ 5,

then it is a contraction mapping.

Proof.

As

Q(η) =
η

5
+ 5,

so,

d(Qη,Qω) =d
(η

5
+ 5,

ω

5
+ 5
)
,

≤
∣∣∣η
5

+ 5− (
ω

5
+ 5)

∣∣∣ ,
≤
∣∣∣η
5

+ 5− ω

5
− 5
∣∣∣ ,

≤
∣∣∣η
5
− ω

5

∣∣∣ ,
≤ 1

5
|η − ω|,

=
1

5
d(η, ω),

therefore contraction constant is α =
1

5
.

2.2.1.2. Contractive Mapping [20]

“A self map T : X → X on a metric space is a contractive mapping if

d(Tx, Ty) < d(x, y), ∀ x, y ∈ X, x 6= y.

Every contraction is contractive mapping but converse of statement is not true in

general.”

For instance look at example given below.
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Example 2.2.1.3.

Consider K = R and (K, d) be a metric space. Q be a self-mapping on K. Define

Q(η) = η +
1

η
, ∀ η ∈ K.

Proof.

d(Q(ζ1), Q(ζ2)) =
∣∣∣ζ1 +

1

ζ1
− ζ2 −

1

ζ2

∣∣∣,
=
∣∣∣ζ1 − ζ2 +

( 1

ζ1
− 1

ζ2

)∣∣∣,
=
∣∣∣(ζ1 − ζ2) +

(ζ2 − ζ1
ζ1ζ2

)∣∣∣,
=
∣∣∣(ζ1 − ζ2)− (ζ1 − ζ2

ζ1ζ2

)∣∣∣,
=
∣∣∣(ζ1 − ζ2)∣∣∣∣∣∣1− ( 1

ζ1ζ2

)∣∣∣,
<|ζ1 − ζ2|,

=d(ζ1, ζ2).

This shows that Q is contractive.

2.2.1.3. Non-Expansive [18]

“A self map T : X → X on a metric space is a non-expansive mapping if

d(Tx, Ty) ≤ d(x, y), ∀ x, y ∈ X, x 6= y.”

Remark 2.2.1.1.

Note that Every contractive mapping is a non-expansive mapping but every non-

expansive mapping is not contractive mapping and hence is not a contraction.

For example, identity map is non-expansive but not a contraction.

2.2.1.4. Lipschitzian Mapping [19]

“Suppose that X is a metric space and F is a mapping from X to X. The mapping

F is called a Lipschitz mapping if there exists a constant k ≥ 0 such that

d(F (x), F (y)) ≤ kd(x, y) ∀ x, y ∈ X.
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The infimum over all such constants k is called the Lipschitz constant.”

Example 2.2.1.4.

Consider a self-map on X = R defined as T (η) = 5η ∀ η ∈ X,

Proof.

d(T (η1), T (η2)) =d(5η1, 5η2)

=|5η1 − 5η2|,

=5|η1 − η2|,

=5d(η1, η2).

Here λ = 5 is the lipschitzian constant.

Berinde has defined the weak contraction as follows.

2.2.1.5. Weak Contraction [21]

“Let (X, d) be a metric space, a self mapping F : X → X is said to be weak

contraction if there exists a constant α ∈ (0, 1) and some β > 0 such that

d(Fx, Fy) 6 α.d(x, y) + β.d(y, Fx) ∀ x, y ∈ X.

Due to symmetry of distance, it includes following

d(Fx, Fy) 6 α.d(x, y) + β.d(x, Fy) ∀ x, y ∈ X.”

2.2.2 Root Finding using Fixed Point Theory

A wide diversity of problems appearing in various fields of mathematics like differ-

ential equations, discrete and continuous system of dynamics can be demonstrated

as fixed point problem. This portion is about the definition of fixed point and ex-

amples related to it.
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2.2.2.1. Fixed Point [22]

“Let T : X → X be a mapping on a set X. A point x ∈ X is said to be a

fixed point of T if

Tx = x,

that is, a point is mapped onto itself.

Geometrically, if y = f(x) is a real valued function on R, then the fixed point

of this function lies where the graph of the function f coincides with the real line

y = x. Thus a function may or may not have fixed point. Furthermore, fixed point

may or may not be unique.”

y=
x

y=f(x)

Figure 2.1: Three Fixed points

The graph mention above represents a function having three fixed points.

Example 2.2.2.1.

Consider X = R with the usual metric d. Suppose mapping T : X → X by

T (x) = x+ 1 ∀ x ∈ X
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Figure 2.2: No Fixed Point

then T has no fixed point.

Example 2.2.2.2.

Let X = R be enriched with the usual metric d. Consider

T : X → X by

T (x) = 2x+ 1 ∀ x ∈ X

Figure 2.3: Unique Fixed Point
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then x = −1 is a fixed point of T and it is unique.

Example 2.2.2.3.

Consider I be the identity map on X = R with usual metric d, that is

I(η) = η, ∀ η ∈ X.

Then each and every point of X will be the fixed point of I.

2.2.2.2. Zeroes of a Function

Problem of finding zeroes of a real valued function g(η) defined on an interval is

equivalent to the problem of finding the fixed point of f(η) where,

f(η) = η − g(η),

since, zeroes of g(η) means η such that,

g(η) = 0,

⇒ η − g(η) = η,

or

f(η) = η,

hence η is a fixed Point of f(η).

Example 2.2.2.4.

Observe the quadratic equation

g(η) = η2 + 5η + 4.

Then, zeroes of g(η) are

η = −4, η = −1,
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which results g(η) = 0,

⇒ η2 + 5η + 4 = 0,

η2 + 4 = −5η,

⇒ η =
η2 + 4

−5
= f(η).

Clearly to find fixed point of f(η) is identical to find the zeroes of g(η).

2.2.3 Banach Contraction Principle

The basic and main result of fixed point theory is BCP. A polished mathemati-

cian Stefan Banach first present BCP in his Ph.D research during 1922. Many

extensions and generalizations on BCP are made by many authors. [for instance

see [23–25]].

Theorem 2.2.3.1. [24]

“Every contraction mapping on a complete metric space has a unique fixed point

that is

if (X, d) is a complete metric space and T : X → X is a mapping such that

∀ x, y ∈ X, ∃ α ∈ [0, 1) such that

d(Tx, Ty) ≤ α d(x, y), x 6= y

then T has a unique fixed point x0 ∈ X that is Tx0 = x0.”

In 1962, Edelstein [26] presented the subsequent well known result.

Theorem 2.2.3.2. [26]

“Let (X, d) be a compact metric space, and let T be a mapping on X. Assume

d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y. Then T has a unique fixed point.”

Example 2.2.3.1.

Consider K = R and d(k, l) = |k − l|. The self map Q is shown by Q(k) = k
f

+ e.



Preliminaries 14

Proof :

Here Q(k) = k
f

+ e and Q(l) = l
f

+ e, then

d(Qk,Ql) =d(
k

f
+ e,

l

f
+ e) ∀ k, l ∈ K,

=|k
f

+ e− (
l

f
+ e)|,

=|k
f

+ e− l

f
− e|,

=|k
f
− l

f
|,

=|k − l
f
|,

=
1

f
d(k, l).

It is a contraction if f > 1.

We can find fixed point using the definition of fixed point.

Q(k) =
k

f
+ e,

k =
k

f
+ e,

k − k

f
= e,

kf − k = ef,

k(f − 1) = ef,

k =
ef

f − 1
.

It satisfies all properties of BCP.
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2.3 Some Basic Tools for F -Contractions

2.3.1. Binary Relation [27]

“Let X be a nonempty set. A subset R of X2 is called a binary relation on X.

Notice that for each pair x, y ∈ X, one of the following conditions holds:

1. x, y ∈ R; which amounts to saying that x is R-related to y or x relates to y

under R. Sometimes we write xRy instead of x, y ∈ R,

2. x, y /∈ R; which means that x is not R-related to y or x does not relates to

y under R.”

2.3.2. Partially Ordered Set [18]

“A partially ordered set is a set M on which there is defined partial ordering, that

is, a binary relation which is written � and satisfies the conditions:

1. Reflexive; for each a ∈M we have a � a.

2. Antisymmetric; If a � b and b � a⇒ b = a, ∀ a, b ∈M .

3. Transitive ; If a � b and b � c ⇒ a � c, ∀ a, b, c ∈M .

Partially emphasizes that M may contain a and b for which neither a � nor b � a

holds. Then a and b are called incompareable elements. In contrast, two elements

a and b are called compareable elements if they satisfies a � b or b � a (or both).”

2.3.3. Totally Ordered Set [18]

“A totally ordered set or chain is a partially ordered set such that every two

elements of the set are compareable. In other words, a chain is a partially orderd

set that has no incompareable elements.

Every totally ordered set is partially ordered set but converse is not true.”

2.3.4. Collection of F - Mappings [11]

“Let F be the family of all functions F : (0,∞) → R which satisfy the following

conditions:
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(F1) F is strictly increasing.

(F2) For every sequence βn ⊂ (0,∞), lim
n→∞

βn = 0 if only if lim
n→∞

F (βn) = −∞.

(F3) There exists k ∈ (0, 1) such that lim
β→0+

βkF (β) = 0.

Throughout this work the family of all continuous functions which satisfy (F2) is

denoted by F .”

Example 2.3.1.

The subsequent functions F : (0,∞)→ R satisfy codition F2:

Here F (ζ) = ln ζ,

Proof :

(i) k < l such that ln k < ln l ∀k, l ∈ R.

Since natural log is an increasing function for base greaer than one.

(ii) Consider ζm ⊆ (0,∞),

such that

lim
m→∞

ζm = 0⇔ F (ζm) = −∞,

⇒ lim
m→∞

ln(ζm) = lim
m→∞

ln(0) = −∞,

Natural logarithm is not defined for negative numbers because e can not

be negative. Natural logarithm of zero would mean that e raise to power

something zero, does not exist.

(iii) ∃ l ∈ (0, 1) such that lim
ζ→0+

ζ l ln(ζ) = 0.

It fulfills all properties of above definition.

Example 2.3.2.

The subsequent functions F : (0,∞)→ R satisfy codition F2:

Here F (ζ) = ζ − 1
ζ
,
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Proof :

(i) ζ < η such that ζ − 1
ζ
< η − 1

η
∀ ζ, η ∈ R.

(ii) Consider ζm ⊆ (0,∞),

such that

lim
m→∞

ζm = 0⇔ F (ζm) = −∞,

⇒ lim
m→∞

(ζm −
1

ζm
) = lim

m→∞
ln(0) = −∞,

(iii) ∃ l ∈ (0, 1) such that lim
ζ→0+

ζ l(ζ − 1

ζ
) = 0.

It fulfills all properties of above definition.

Example 2.3.3.

The subsequent functions F : (0,∞)→ R satisfy codition F2:

Here F (ζ) = ln( ζ
3

+ sinζ),

Proof :

(i) ζ < η such that ln( ζ
3

+ sinζ) < ln(η
3

+ sinη) ∀ ζ, η ∈ R.

(ii) Consider ζm ⊆ (0,∞),

such that

lim
m→∞

ζm = 0⇔ F (ζm) = −∞,

⇒ lim
m→∞

(
ζm
3

+ sinζm) = lim
m→∞

ln(0) = −∞,

(iii) ∃ l ∈ (0, 1) such that lim
ζ→0+

ζ l(
ζ

3
+ sinζ) = 0

It fulfills all properties of above definition.
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In [11], Wardowski defined F -contractions as follows.

2.3.5. F -Contractions [11]

“Let (M,d) be a metric space. A mapping T : M → M is said to be an F -

contractions if there exist τ > 0 and F ∈ F such that

d(Tx, Ty) > 0 implies τ + F (d(Tx, Ty)) 6 F (d(x, y)) ∀ x, y ∈M.”

Now we give some examples of F -contractions as follows.

Example 2.3.4.

Let F : R+ → R and F (k) = ln k. Then F ∈ F for any l ∈ (0, 1),

τ + ln
(
d(Qk,Ql)

)
6 ln d(k, l) ∀ k, l ∈ K,

⇒ d(Qk,Ql) 6 exp− τ d(k, l),

or

d(Qk,Ql)

d(k, l)
6 exp− τ .

It satisfies all properties of above definition. Then it is an F contraction.

Example 2.3.5.

Let F : R+ → R and F (k) = ln k + k. Then F ∈ F for any l ∈ (0, 1),

τ + ln
(
d(Qk,Ql)

)
+ d(Qk,Ql) 6 ln d(k, l) + d(k, l) ∀ k, l ∈ K,

⇒ τ + ln
(
d(Qk,Ql)

)
− ln d(k, l) 6d(k, l)− d(Qk,Ql),

or

d(Qk,Ql)

d(k, l)
expd(Qk,Ql)−d(k,l) 6 exp− τ ∀ k, l ∈ K and Qk 6= Ql.

It satisfies all properties of above definition. Then it is an F contraction.
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Theorem 2.3.1. [11]

“Every F -contraction mapping T defined on a complete metric space (M,d) has a

unique fixed point (say z). Moreover, for any x ∈M the sequence {T nx} converges

to z.”

In [11], Wardowski has extended the idea of F -contractions to (F,R) contractions

as follows.

2.3.6. (F,R)-Contractions [11]

“Let (M,d) be a metric space and R be a binary relation on M . A mapping

T : M → M is said to be an (F,R)-contractions if there exist τ > 0 and F ∈ F

such that

τ + F (d(Tx, Ty)) 6 F (d(x, y)), ∀ x, y ∈M with xR/y and TxR/Ty,

where xR/y means (x, y) ∈ R and x 6= y”.

Using the idea of [11], Wardowski [28] has defined Fw- contraction.

2.3.7. F - Weak Contractions [28]

“Let (M,d) be a metric space. A mapping T : M → M is said to be an F - weak

contraction if there exist τ > 0 and F ∈ F such that for all x, y ∈M

d(Tx, Ty) >0 implies τ + F (d(Tx, Ty)) 6 F (m(x, y)),

where m(x, y) = : max
{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
.”

(2.1)

We can see from above definition that,

Remark 2.3.1. [28]

“Every F -contraction is an F -weak contraction but converse is not true.”

Remark 2.3.2. [28]

“Let T be an F -contraction. Then d(Tx, Ty) < d(x, y) for all x, y ∈ X such that

Tx 6= Ty. Also T is a continuous map.”
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An example of Fw contraction which is not an F -contraction is given here.

Example 2.3.6. Let Q : [0, 1]→ [0, 1] defined by

Qk =


1
2
, if k ∈ [0, 1),

1
4
, if k = 1.

By Remark 2.3.2, Q is not an F -contraction because Q is not continuous.

For k ∈ [0, 1) and l = 1, we have

d(Qk,Ql) = d
(1

2
,
1

4

)
=
∣∣∣1
2
− 1

4

∣∣∣ =
1

4
> 0

and

max
{
d(k, 1), d(k,Qk), d(1, Q1),

d(k,Q1) + d(1, Qk)

2
> d(1, Q1) =

3

4

}
.

Here τ = ln 3 and F (η) = ln η and using the definition of F -contractions, we have

ln 3 + ln
1

4
≤ ln

3

4
,

ln
1

4
≤ ln

3

4
− ln 3,

= ln
1

4
.

It satisfies all properties of above definition.

Next Theorem shows the existence of unique fixed point for F -weak contractions.

Theorem 2.3.2. [28]

“Let (M,d) be a complete metric space and T : M →M be an F -weak contraction.

If F or T is continuous, then

(i) T has a unique fixed point (say z ∈M),

(ii) lim
n→∞

T nx = z ∀ x ∈M .”

2.3.8. Coincidence Point, Weakly Compatible [29]

“Let f and g be self-maps of a set X, that is f, g : X → X. If w = fx = gx for
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some x ∈ X, then x is called a coincidence point of f and g, and w is called a

point of coincidence of f and g.

Self-maps f and g are said to be weakly compatible if they commute at their

coincidence point; that is, if fx = gx for some x ∈ X, then fgx = gfx.”

Example 2.3.7. Let K = [0, 4] with d(k, l) = |k− l|. Define p, q : [0, 4]→ [0, 4] by

p(k) =

k, if k ∈ [0, 1)

4, if k ∈ [1, 4]

and

q(k) =

4− k, if k ∈ [0, 1)

4, if k ∈ [1, 4]

p and q are weakly compatible maps on [0, 4] as pqk = qpk for any k ∈ [1, 4].

2.3.9. Common Fixed Point [30]

“A common fixed point of a pair of self-mapping K,L : X → X is a point x ∈ X

for which Kx = Lx = x.”

2.3.10. g-Continuous

Let f and g be self-maps of a set X. The mapping f is called g-continuous at

k ∈ X if ∀ {km} ⊆ X, gkm → gk implies fkm → fk.



Chapter 3

Relation Theoretic Concepts and

Auxiliary Consequences

In this chapter we are going to discuss (F,R)g contractions and some coincidence

and common fixed point results proved by Alfaqih et al. [16] and some conse-

quences in order metric space are also produced. At the end we have discussed an

example to support our result.

3.1 Relation Theoretic Definitions

3.1.1. Inverse Binary Relation [27]

“Let X be a nonempty set, and let R be a binary relation on X.

1. The inverse or transpose or dual relation of R, denoted by R−1, is defined

by

R−1 = {(x, y) ∈ X2 : (y, x) ∈ R}.

2. The symmetric closure of R, denoted by Rs, is defined as the set R∪R−1,

that is Rs := R∪R−1. In fact , Rs is the smallest symmetric relation on X

containing R.”

22
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Notice that there is another binary relation R/ ⊆ R on X which is defined as kR/l

whenever kRl and k 6= l.

3.1.2. Restriction of R to E [1]

“Let X be a nonempty set, let E ⊆ X, and let R be a binary relation on X. Then

the restriction of R to E , denoted by R|E, is defined as the set R ∩ E2 that is

R|E := R∩ E2. In fact, R|E is a relation on E induced by R.”

3.1.3. Preorder [31]

“Consider a non-empty set X and a binary relation � on X. Then, � is a preorder,

or quasiorder, if it is reflexive and transitive, that is, forall a, b and c ∈ X; we have

that:

1. a � a (reflexivity),

2. If a � b and b � c; then a � c (transitivity).”

3.1.4. R- Preserving Sequence [32]

“Let M be a non-empty set and R be a binary relation on M . A sequence

{xn} ⊆M is said to be an R-preserving sequence if

xnRxn+1 ∀ n ∈ N0.”

3.1.5. T - Closed [32]

“Let M be a non-empty set and T : M → M . A binary relation R on M is said

to be T - closed if for all x, y ∈M , xRy implies TxRTy.”

The following example of T -closed binary relation.

Example 3.1.1.

Let M = R and d = |k − l|, then (M,d) is a complete metric space. A binary

relation on M is defined as

R = {(k, l) ∈ R2 : k − l > 0, k ∈ Q},
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and T : X → X defined by

T (k) = 4 +
1

3
k.

R is T - closed.

Example 3.1.2.

Consider a complete metric space (M,d) and M = [0, 2].

Define

R = {(0, 0), (0, 1), (1, 0), (1, 1), (0, 2)},

and T : M →M is defined by

T (k) =

0, if 0 ≤ k ≤ 1

1, if 1 ≤ k ≤ 2

Clearly T is not continuous and R is T - closed.

3.1.6. (T, g)- Closed [33]

“Let M be a non-empty set and T, g : M →M . A binary relation R on M is said

to be (T, g)- closed if for all x, y ∈M , gxRgy implies TxRTy.”

3.1.7. R-Complete [33]

“Let (M,d) be a metric space and R be a binary relation on M . We say that M

is R-complete if every R-preserving Cauchy sequence in M converges to a limit

in M .”

Remark 3.1.1. [33]

“Every complete metric space is R-complete, whatever the binary relation R.

Particularly, under the universal relation, the notion of R-completeness coincides

with the usual completeness.”

3.1.8. R-Continuous [33]

“Let (M,d) be a metric space and R be a binary relation on M , T : M → M

and x ∈M . We say that T is R-continuous at x if for any R-preserving sequence
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{xn} ⊆ M such that {xn} → x, we have {Txn} → Tx. Moreover T is called

R-continuous if it is R-continuous at each point of M .”

Remark 3.1.2. [33]

“Every continuous mapping isR-continuous, whatever the binary relationR. Par-

ticularly, under the universal relation, the notion of R-continuity coincides with

the usual continuity.”

3.1.9. (g,R)-Continuous [33]

“Let (M,d) be a metric space and R be a binary relation on M and T, g : M →M

and x ∈M . We say that T is (g,R)-continuous at x if for any sequence {xn} ⊆M

such that {gxn} isR-preserving and {gxn} → gx, we have {Txn} → Tx. Moreover

T is called (g,R)-continuous if it is (g,R)-continuous at each point of M .”

Remark 3.1.3. [33]

“Every continuous mapping is (g,R)-continuous, whatever the binary relation R.

Particularly, under the universal relation, the notion of (g,R)-continuity coincides

with the usual g-continuity.”

3.1.10. R-Compatible [33]

“Let (M,d) be a metric space andR be a binary relation on M and T, g : M →M .

We say that the pair (T, g) is R-compatible if for any sequence {xn} ⊆ M such

that {Txn} and {gxn} are R- preserving and lim
n→∞

gxn = lim
n→∞

Txn = x ∈ M , we

have

lim
n→∞

d(gTxn, T gxn) = 0.

Remark 3.1.4. [33]

“Every compatible pair is R-compatible, whatever the binary relation R. Partic-

ularly, under the universal relation, the notion of R−compatibility coincides with

the usual compatibility.”

3.1.11. d-Self Closed [32]

“Let (M,d) be a metric space, a binary relation R on M is said to be d-self closed

if for any R-preserving sequence {xn} ⊆ M such that {xn} → x, there exists a

subsequence {xnk
} of {xn} such that [xnk

, x] ∈ R ∀ k ∈ N0.”
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Example 3.1.3.

Assume (M,d) be a complete metric space and M = [0, 2] endowed with d = |k−l|.

Define

R = {(0, 0), (0, 1), (1, 0), (1, 1), (0, 2)}

on K and T : M →M is represented by

T (k) =

0, if 0 ≤ k ≤ 1

1, if 1 ≤ k ≤ 2.

Consider {km} be an R - preserving sequence such that

km → k

so that (km, km+1) ∈ R ∀ m ∈ N0,

observe that

(km, km+1) /∈ {(0, 2)}

so that

(km, km+1) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} ∀ m ∈ N0,

implies {km} ⊂ {0, 1}.

Since {0, 1} is closed, so [km, k] ∈ R. Hence R is d-self closed.

3.1.12. Path [1]

“For x, y ∈ X, a path of length p (p ∈ N) in R from x to y is a finite sequence

{u0, u1, ......, up} ⊆ X such that u0 = x, up = y, and (ui, ui+1) ∈ R for each

i ∈ {0, 1, ....., p− 1}.”

3.1.13. R-Connected [33]

“A subset E ⊆ X is said to be R- connected if, for each x, y ∈ E, there exists a

path in R from x to y.” [33]

Lemma 3.1.1. [34, 35]

Consider a metric space (X, d) and a sequence {km} in X. If {km} is not Cauchy
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in X, then ∃ ε > 0 and two subsequences {km(j)} and {kt(j)} of {km} such that

j ≤ m(j) 6 t(j), d(km(j), kt(j)−1) 6 ε < d(km(j), kt(j)) ∀j ∈ N0

Moreover if {km} is such that lim
m→∞

d(km, km+1) = 0, then

lim
j→∞

d(km(j), kt(j)) = lim
j→∞

d(km(j)−1, kt(j)−1)) = ε.

Proof.

If {km} is not Cauchy in X, then ∃ ε > 0 and two subsequences {km(j)} and {kt(j)}

of {km} such that

j 6 m(j) 6 t(j), ∀ j ∈ N0

and

d(km(j), kt(j)−1) 6 ε and d(km(j), kt(j)) > ε

then,

ε < d(km(j), kt(j)) ≤ d(km(j), kt(j)−1) + d(kt(j−1), kt(j))

taking the limj→∞ and using the assumption

lim
m→∞

d(km, km+1) =0,

⇒ ε < d(km(j), kt(j)) ≤d(km(j), kt(j)−1) + 0

⇒ ε < d(km(j), kt(j)) ≤ε

⇒ d(km(j), kt(j)) =ε,

similarly, we have

d(km(j)−1, kt(j)−1) = ε.

Lemma 3.1.2. [36]

“Let M be a non-empty set and g : M → M . Then there exists a subset E ⊆ M

such that g(E) = g(M) and g : E → E is one - one.”
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3.2 (F,R)g-Contractions and Related Results

In [28], Alfaqih et al. has defined (F,R)g-contractions and prove certain results.

3.2.1. (F,R)g-Contractions [28]

“Let (M,d) be a metric space and T, g : M → M . Then T is said to be an

(F,R)g-contraction if there exists τ > 0 such that

τ + F (d(Tx, Ty)) ≤ F (d(gx, gy)) (3.1)

for all x, y ∈ M with gxR/gy and TxR/Ty, where F : (0,∞) → R is continuous

mapping satisfying (F2).

Due to the symmetricity of the metric d, the following proposition is immediate.”

Proposition 3.2.1. [11]

“Let (M,d) be a metric space endowed with a transitive binary relation R and

T, g : M → M . Then for each continuous mapping F : (0,∞) → R satisfying

(F2), the following are equivalent:

1. for all x, y ∈M such that (gx, gy) ∈ R and (Tx, Ty) ∈ R,

τ + F (d(Tx, Ty)) ≤ F (d(gx, gy)),

2. for all x, y ∈M such that either (gx, gy), (Tx, Ty) ∈ R

or

(gy, gx), (Ty, Tx) ∈ R ,

τ + F (d(Tx, Ty)) ≤ F (d(gx, gy)).”

Theorem 3.2.2.

Consider a metric space (X, d) equipped with R where R is a transitive binary

relation and Q, g : X → X. Assume that the subsequent conditions are fulfilled:

(1) ∃ k0 ∈ X such that gk0RQk0,
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(2) R is (Q, g)-closed,

(3) Q is an (F,R)g-contraction,

(4) (a) A subset K of X exists such that Q(X) ⊆ K ⊆ g(X) and K is R -

complete.

(b) One of the subsequent conditions is satisfied:

(i) Q is (g,R)-continuous, or

(ii) Q and g are continuous, or

(iii) R|K is d-self closed on condition that (3.1) holds for all k, l ∈ X

with gkRgl and QkR/Ql,

or on the other hand

(α) (α1) ∃ a subset L of X such that Q(X) ⊆ g(X) ⊆ L and L is R- complete,

(α2) (Q, g) is an R- compatible pair,

(α3) Q and g are R-continuous.

Then (Q, g) has a coincidence point.

Proof. In the above two cases (4) and (α) we can see Q(X) ⊆ g(X). Using

assumption (1), we get gk0RQk0. If Qk0 = gk0, then coincidence point of (Q, g)

is k0 and it completes the proof.

Suppose that Qk0 6= gk0, since Q(X) ⊆ g(X), so there must exist k1 ∈ X such

that gk1 = Qk0. Similarly, there is k2 ∈ X such that gk2 = Qk1. Proceeding in

this way we can construct a sequence {km} ⊆ X such that

gkm+1 = Qkm ∀ m ∈ N0. (3.2)

Now we will prove an R-preserving sequence {gkm}, that is

gkmRgkm+1 ∀ m ∈ N0. (3.3)

By using induction we will prove this claim. If we put m = 0 in (3.2) and use

condition (1), we get gkoRgk1. Which implies that above statement holds for
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m = 0. Suppose that (3.3) is accurate for m = j > 1, that is, gkjRgkj+1. Since R

is (Q, g)-closed, so we get QkjRQkj+1, this yields that gkj+1Rgkj+2. Hence our

claim is true ∀ m ∈ N0.

By using (3.2) and (3.3), we can conclude that {Qkm} is also R-preserving se-

quence, that is,

QkmRQkm+1 ∀ m ∈ N0. (3.4)

If Qkm0 = Qkm0+1 for some m0 ∈ N0, then we can conclude that km0 is a coinci-

dence point of (Q, g).

Suppose to the contrary that Qkm 6= Qkm+1 ∀ m ∈ N0. With the help of (3.2),

(3.3), (3.4) and condition (3), we can see that

τ + F
(
d(gkm, gkm+1)

)
= τ + F

(
d(Qkm−1, Qkm)

)
≤ F

(
d(gkm−1, gkm)

)
, (3.5)

for all m ∈ N0.

Denote γm = d(gkm, gkm+1), with the help of equation (3.5) and condition (3)

we obtain

F (γm) ≤ F (γm−1)− τ ≤ F (γm−2)− 2τ..... ≤ F (γ0)−mτ (∀ m ∈ N).

Taking m→∞ in above inequality, we obtain

lim
m→∞

F (γm) = −∞,

which together with (F2) implies that

lim
m→∞

γm = 0. (3.6)

Now, we will show that {gkm} is a Cauchy sequence. To do this assume to the

contrary that {gkm} is not a Cauchy sequence. Using Lemma (3.1.1) and equation
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(3.6) guarantees the existence of ε > 0 and two subsequences {gkmj
} and {gktj}

of {gkm} such that

d(gkm(j), gkt(j−1)) ≤ ε < d(gkm(j), gkt(j))

and

j ≤ m(j) ≤ t(j), j ∈ N0

and

lim
j→∞

d
(
gkm(j), gkt(j)

)
= d
(
gkm(j)−1, gkt(j)−1

)
= ε (3.7)

This implies that ∃ j0 ∈ N0 Such that d(gkm(j)−1, gkt(j)−1) > 0 ∀j ≥ j0. Since R

is transitive, so we have gkm(j)−1R/gkt(j)−1 and Qkm(j)−1R/Qkt(j)−1 ∀ j ≥ j0.

Using condition (3), we have

τ + F
(
d(Qkm(j)−1, Qkt(j)−1)

)
6 F

(
d(gkm(j)−1, gkt(j)−1)

)
∀ j > j0. (3.8)

Since F is continuous, let j → ∞ in above equation and using (3.7), we obtain

τ + F (ε) 6 F (ε), since τ > 0 we have a contradiction to the fact that {gkm} is a

cauchy sequence.

Suppose that condition (4) is true. With the help of (3.2) we obtain {gkm} ⊆

Q(X). Therefore, {gkm} is an R- Preserving Cauchy sequence in K. By utilizing

R-completeness of K, ∃ l ∈ K Such that {gkm} → l.

As K ⊆ g(X), ∃ v ∈ X such that l = gv. Hence by using (3.2), we acquired

lim
m→∞

gkm = lim
m→∞

Qkm = gv. (3.9)

In order to prove that v is coincidence point of (Q, g), we will use three different

cases of condition (b).

First of all, suppose that Q is (g,R)-continuous. By utilizing (3.3) and (3.9),
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we get

lim
m→∞

Qkm = Qv. (3.10)

By utilizing (3.9) and (3.10), we get

Qv = gv.

This shows that v is a coincidence point of (Q, g).

Now suppose second case of (b) that is Q and g are continuous. Since X 6= 0 and

g : X → X, then by using Lemma (3.1.2), ∃ B ⊆ X such that g(B) = g(X) and

g : B → B is one-one.

Define a mapping f : g(B)→ g(X) by

f(gb) = Qb ∀ gb ∈ g(B) where b ∈ B. (3.11)

Since g is one-one and Q(X) ⊆ g(X) implies that f is well- defined mapping. As

Q and g are continuous implies that f is also continuous. Now utilizing the truth

that g(X) = g(B).

Because g(X) = g(B) we can rewrite condition (a) as Q(X) ⊆ K ⊆ g(B). So

that, without loss of generality, we can select a sequence {km} in B and v ∈ B.

By using (3.9), (3.11) and continuity of f , we have

Q(v) = f(gv) = f( lim
m→∞

gkm) = lim
m→∞

f(gkm) = lim
m→∞

Qkm = gv.

This implies that v is a coincidence point of (Q, g).

Finally suppose that (iii) of (b) holds which implies that R|K is d-self closed and

(3.1) detain ∀ k, l ∈ X with gkRgl and QkR/Ql. As {gkm} ⊆ K, {gkm} is R|K

preserving due to (3.3) and with the help of (3.9) {gkm} → gv. So that ∃ a sub-

sequence {gkmj
} ⊆ {gkm} such that

[gkmj
, gv] ∈ R|K ⊆ R ∀ j ∈ N0 (3.12)
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Utilizing condition (2) and (3.12), we obtained

[Qkmj
, Qv] ∈ R|K ⊆ R ∀ j ∈ N0. (3.13)

Now, let q = {j ∈ N : Qkmj
= Qv}. If q is infinite, then {Qkmj

} has a subsequence

{Qkmjp
}, such that Qkmjp

= Qv. This implies that lim
p→∞

Qkmjp
= Qv ∀p ∈ N. By

using (3.9), we have lim
m→∞

Qkm = gv. So we obtain Qv = gv.

If q is finite, then Qkmj
has a subsequence Qkmjp

such that Qkmjp
6= Qv ∀ p ∈ N.

With the help of (3.12), (3.13) and Qkmjp
6= Qv ∀ p ∈ N, we have

[gkmjp
, gv] ∈ R \K ⊆ R ∀ p ∈ N0. (3.14)

and

[Qkmjp
, Qv] ∈ R \K ⊆ R and Qkmjp

6= Qv ∀ p ∈ N0. (3.15)

Now with the help of (3.14), (3.15), proposition (3.2.1), and the fact that (3.1)

satisfied, we obtain

F
(
d(Qkmjp

, Qv)
)
≤ F

(
d(gkmjp

, gv)
)
− τ.

By using (3.9), (F2) and taking p→∞, we get

lim
j→∞

Qkmj
= Qv. (3.16)

From (3.9) and (3.16), we obtain

Qv = gv.

Hence v is a coincidence point of (Q, g) in both cases either q is finite or infinite.

Now if (α) holds then {gkm} ⊆ L, and hence {gkm} is R-preserving Cauchy se-

quence in L. Since L is R- complete. This implies that u ∈ L such that
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lim
m→∞

gkm = u. (3.17)

Using equations (3.2) and (3.17, we obtain

lim
m→∞

Qkm = u. (3.18)

Now with the help of (3.3) ,(3.17) and continuity of g, we obtain

lim
m→∞

g(gkm) = g( lim
m→∞

gkm) = gu. (3.19)

Utilizing (3.4), (3.18) and continuity of g to obtain

lim
m→∞

g(Qkm) = g( lim
m→∞

Qkm) = gu. (3.20)

As Qkm and gkm are R-Preserving due to (3.3), (3.4) and

lim
m→∞

Qkm = lim
m→∞

gkm = u.

Now using (3.18), (3.17) and condition (α2),

lim
m→∞

d(gQkm, Qgkm) = 0. (3.21)

Next, we will demonstrate that coincidence point of (Q, g) is u. Making use of

(3.3), (3.17) and the R- continuity of Q, we get

lim
m→∞

Q(gkm) = Q( lim
m→∞

gkm) = Qu. (3.22)

With the use of (3.20), (3.21), (3.22), we obtain

d(gu,Qu) =d( lim
m→∞

gQkm, lim
m→∞

Qgkm)

= lim
m→∞

d(gQkm, Qgkm) = 0.

⇒Qu = gu.
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This implies that u is a coincidence point of (Q, g).

Theorem (3.2.2) does not guarantees the uniqueness of coincidence point. The

following theorem guarantees that coincidence point is unique.

Theorem 3.2.3. [16]

“If, in addition to hypothesis (1 − 4) of theorem (3.2.2), we assume that for all

distinct coincidence point u, v ∈ coin (T, g), gu and gv are R - compareable and

one of T and g is one-one, then (T, g) has a unique coincidence point.”

Proof. The set coin (T, g) is nonempty, because of theorem (3.2.2). Consider two

elements u, v ∈ coin(T, g), then by definition of coin(T, g), we have [gv, gu] ∈ R

and Tu = gu, Tv = gv. This implies [Tu, Tv] ∈ R.

Now if gu = gv, we obtain Tv = gv = gu = Tu, and hence v = u, since one of T

and g is one-one.

By utilizing condition (3) and Proposition (3.2.1), we obtain

τ + F
(
d(Tu, Tv)

)
6 F

(
d(gu, gv)

)
= F

(
d(Tu, Tv)

)
.

This is a contradiction as τ > 0. Therefore a unique coincidence point of (Q, g)

exists.

Next theorem guarantees the existence of unique common fixed point.

Theorem 3.2.4. [16]

“If in addition to hypothesis of above theorem, we assume that (T, g) is a weakly

compatible pair, then the pair (T, g) has a unique common fixed point.”

Proof. Above theorem assures that (T, g) has a unique coincidence point. Let v

be the common coincidence point and suppose z ∈ X be such that

z = Tv = gv.

Since T and g are weakly compatible, we acquired Tz = Tgv = gTv = gz. Which

implies z is a coincidence point of T and g. Since v is unique implies z = v. Which

implies uniqueness of common fixed point. Since all the assumptions of Theorem

(3.1.2) are true implies the set coin (T, g) is nonempty.
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Theorem 3.2.5. [16]

“Let (M,d) be a metric space endowed with a transitive binary relation R and

T : M →M . Assume that the following conditions are fulfilled:

(1) There exists x0 ∈M such that x0RTx0,

(2) R is T-closed,

(3) T is an (F,R) -contraction,

(4) (α) There exists a subset X of M such that T (M) ⊆ X and X is R -

complete,

(η) one of the following holds :

(i) T is R-continuous; or

(ii) R|X is d-self closed provided Definition (3.1.1) holds for all x, y ∈

M with xRy and TxR/Ty. Then T has a fixed point. Moreover, if

(e) [u, v] ∈ Fix(T ) implies that [u, v] ∈ R,

then T has a unique fixed point.”

Theorem 3.2.6. [16]

“If condition (e) of above theorem is replaced by following:

(e*) Fix(T ) is Rs-connected,

then the fixed point of T is unique.”

Proof. Assume on contrary that T has more than one fixed points say u and v

with u 6= v. Then there exist a path Rs ⊆ Fix(T ). As it is from v to u of length

q. Let us denote the path by {v0, · · · vq} such that vp 6= vp+1 for each p where

0 6 p 6 j − 1. If v = u, it is a contradiction. so that

v0 = v, vq = u and [vp, vp+1] ∈ R for each p (0 6 p 6 q − 1).

As vp ∈ Fix(T ) implies that Tvp = vp for each p ∈ {0, 1, ...., q}. With the help of

condition (c), we have

τ + F (vp, vp+1) 6 F (vp, vp+1) ∀ p (0 6 p 6 j − 1). (3.23)
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Since τ > 0, it is a contradiction. Hence T has a unique fixed point.

Example 3.2.1.

Consider X = (0,∞) be enriched with the usual metric.

Define a sequence {πn} ⊆ X as follows

πn =
n(n+ 1)(n+ 2)

3
∀ n > 1.

Define a binary relation R on X by

R = {(π1, π1), (πp, πp+1) : p ≥ 1}.

Consider Q : X → X in the following manner

Qk =


k, if 0 ≤ k ≤ π1;

π1, if π1 ≤ k ≤ π2;

πp +
(

πp+1−πp
πp+2−πp+1

)(
k − πp+1

)
, if πp+1 ≤ k ≤ πp+2, p = 1, 2, · · ·

and

Define g : X → X as

gk = πp +
( πp+1 − πp
πp+2 − πp+1

)(
k − πp

)
, if πp ≤ k ≤ πp+1, p = 1, 2, · · ·

Proof.

We can see that mapping Q is continuous. Also we can observe that

Qπp+1 = πp.

gπp = πp.

Combining above, we have

Qπp+1 = gπp.

Define F : (0,∞)→ R and F ∈ F by

F (β) = β − 1

β
,
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Notice that if gkR/gl and QkR/Ql, then k = πp, l = πp+1 for some p ∈ N− 1.

Observe first

for u > n = 1, we have

|Q(πu)−Q(π1)| = |πu−1 − π1| =
2× 3× 4

3
+ ........+

u(u− 1)(u+ 1)

3
.

|πu − π1| =
2× 3× 4

3
+ ........+

u(u+ 1)(u+ 2)

3
.

Since u > 1, we have

−1
2×3×4

3
+ ........+ u(u−1)(u+1)

3

<
−1

2×3×4
3

+ ........+ u(u+1)(u+2)
3

we have

6− 1
2×3×4

3
+ ........+ u(u−1)(u+1)

3

< 6− 1
2×3×4

3
+ ........+ u(u+1)(u+2)

3

,

⇒ 6− 1
2×3×4

3
+ ........+ u(u−1)(u+1)

3

+
2× 3× 4

3
+ ........+

u(u− 1)(u+ 1)

3

< 6− 1
2×3×4

3
+ ........+ u(u+1)(u+2)

3

+
2× 3× 4

3
+ ........+

u(u− 1)(u+ 1)

3
,

≤ −1
2×3×4

3
+ ........+ u(u+1)(u+2)

3

+
2× 3× 4

3
+ ........+

u(u− 1)(u+ 1)

3

+
u(u+ 1)(u+ 2)

3
,

=
1

2×3×4
3

+ ........+ u(u+1)(u+2)
3

+
2× 3× 4

3
+ ........+

u(u+ 1)(u+ 2)

3
,

so, it takes form

6− 1

|Q(πu)−Q(π1)|
+ |Q(πu)−Q(π1)| = 6 + |πu−1 − π1| −

1

|πu−1 − π1|

≤|πu − π1| −
1

|πu − π1|

=|gπu − gπ1| −
1

|gπu − gπ1|
.

For u > n > 1, we have
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6 + |Qπu −Qπn| −
1

|Qπu −Qπn|
=6 + |πu−1 − πn−1| −

1

|πu−1 − πn−1|

≤|πu − πn| −
1

|πu − πn|

=|gπu − gπn| −
1

|gπu − gπn|
.

Consequently, 6+F
(
d(Qk,Ql)

)
≤ F

(
d(gk, gl)

)
for all k, l ∈ K such that gkR/gl

and QkR/Ql. Hence It is prove that Q is (F,R)g.

3.3 Some Consequences in Ordered Metric Spaces

3.3.1. Ordered Metric Space

Let (M,d) be a metric space and (M,�) an ordered set, then triplet (M,d,�) is

known as an ordered metric space.

3.3.2. g-Increasing [37]

“Let (M,�) be an ordered set and T, g : M →M . Then T is said to be g-increasing

if, for any x, y ∈M , gx � gy implies that Tx � Ty.”

Remark 3.3.1. [37]

“Observe that the notion of T is g-increasing is equivalent to saying that � is

(T, g)-closed.”

On setting R =� in Theorem (3.2.2) to (3.2.4) and using Remark (3.3.1), we

obtain the following result.

Corollary 1. [16]

“Let (M,d,�) an ordered metric space and T, g : M → M . Assume that the

following conditions are fulfilled:

(a) There exists x0 ∈M such that gx0 � Tx0,

(b) T is g-increasing,
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(c) There exists τ > 0 and a continuous function F satisfying (F2) such that

τ + F
(
d(Tx, Ty)

)
≤ F

(
d(gx, gy)

)
∀ x, y ∈M with gx ≺ gy and Tx ≺ Ty.

(d) There exists a subset X of M such that T (M) ⊆ X ⊆ g(M) and X is �

-complete,

(e) either T is (g,�)-continuous or T and g are continuous, then the pair (T, g)

has a coincidence point. If in addition we assume that

(f) for all distinct coincidence points u,v ∈coin(T, g), Tu and gv are � - com-

pareable, then (T, g) has a unique coincidence point. Furthermore, if T and

g are weakly compatible,then the pair (T, g) has a unique common fixed

point.

On setting R =� in Theorem (3.1.6) and using Remark 3.3.1, we deduce the

following result.”

Corollary 2. [16]

“Let (M,d,�) an ordered metric space and T : M → M . Assume that the

following conditions are fulfilled:

(a) There exists x0 ∈M such that x0 � Tx0.

(b) T is � -increasing.

(c) There exists τ > 0 and a continuous function F satisfying (F2) such that

τ + F
(
d(Tx, Ty)

)
≤ F

(
d(x, y)

)
∀ x, y ∈M with x ≺ y and Tx ≺ Ty.

(d) There exists subset K of X such that Q(X) ⊆ K and K is � -complete,

(e) T is �-continuous, then T has a common fixed point.

Moreover, if

(f) u, v ∈ Fix (T ) implies that [u, v] ∈� then T has a unique fixed point.”



Chapter 4

Relation-theoretic Coincidence

and Common Fixed Point Results

under (Fw,R)g-Contractions

In current chapter we have introduced the notion of (Fw,R)g -contractions and

prove results of coincidence, common fixed points for such contraction using the

idea of Alfaqih et al. [16]. We also prove some consequences in ordered metric

space and give an example to explain our new notion.

4.1 F -weak Contraction with Binary Relation R

under g

4.1.1. (Fw,R)g-contractions

Consider a metric space (X, d) endowed with a transitive binary relation R on X.

A self mapping (Q, g) : X → X is called an (Fw,R)g -contraction if ∃ τ > 0 such

that

41
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τ + F
(
d(Qk,Ql)

)
6 F

(
max

{
d
(
gk, gl

)
, d
(
gk,Qk

)
, d
(
gl, Ql

)
,

d
(
gk,Ql

)
+ d
(
gl, Qk

)
2

}) (4.1)

for all k, l ∈ X with gkR/gl and QkR/Ql.

Where F : (0,∞)→ R is a continuous mapping which satisfies (F2).

Remark 4.1.1.

Every (F,R)g contraction is (Fw,R)g contraction, but converse of statement is

not true.

Proposition 4.1.1.

Consider (X, d) be a metric space equipped with a transitive binary relation R

and Q, g : X → X.

Then for each continuous mapping F : (0,∞) → R which satisfies (F2), the

following are equivalent:

(a) ∀ k, l ∈ X such that
(
gk, gl

)
∈ R and

(
Qk,Ql

)
∈ R,

τ + F
(
d(Qk,Ql)

)
6 F

(
max

{
d
(
gk, gl

)
, d
(
gk,Qk

)
,
(
gl, Ql

)
,

d
(
gk,Ql

)
+ d
(
gl, Qk

)
2

})
.

(b) ∀ k, l ∈ X such that either
(
gk, gl

)
,
(
Qk,Ql

)
∈ R

or

(
gl, gk

)
,
(
Ql,Qk

)
∈ R ,

τ + F
(
d(Qk,Ql)

)
6 F

(
max

{
d
(
gk, gl

)
, d
(
gk,Qk

)
,
(
gl, Ql

)
,

d
(
gk,Ql

)
+ d
(
gl, Qk

)
2

})
.
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Theorem 4.1.2.

Consider a metric space (X, d) equipped with R (where R is a transitive binary

relation) and Q, g : X → X. Suppose that the subsequent conditions are fulfilled:

(1) ∃ k0 ∈ X such that gk0RQk0,

(2) R is (Q, g)-closed,

(3) Q is an (Fw,R)g-contraction,

(4) (a) A subset K of X exists such that Q(X) ⊆ K ⊆ g(X) and K is R -

complete.

(b) One of the subsequent conditions is fulfilled:

(i) Q is (g,R)-continuous, or

(ii) Q and g are continuous, or

(iii) R|K is d-self closed on condition that (4.1) holds for all k, l ∈ X

with gkRgl and QkR/Ql,

or on the other hand

(α) (α1) ∃ a subset L of X such that Q(X) ⊆ g(X) ⊆ L and L is R- complete,

(α2) (Q, g) is an R- compatible pair,

(α3) Q and g are R-continuous,

then (Q, g) has a coincidence point.

Proof. In the above two cases (4) and (α) we can see Q(X) ⊆ g(X). Using

assumption (1), we get gk0RQk0.

If Qk0 = gk0, then coincidence point of (Q, g) is k0 and it completes the proof.

Suppose that Qk0 6= gk0, since Q(X) ⊆ g(X), so there must exist k1 ∈ X such

that gk1 = Qk0. Similarly, there is k2 ∈ X such that gk2 = Qk1. Proceeding in

this way we can construct a sequence {km} ⊆ X such that

gkm+1 = Qkm ∀ m ∈ N0. (4.2)
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Now we will prove {gkm} is an R-preserving sequence, that is

gkmRgkm+1 ∀ m ∈ N0. (4.3)

By using induction we will prove this claim. If we put m = 0 in (4.2) and use con-

dition (1), we get gkoRgk1. Which implies that above statement holds for m = 0.

Suppose that (4.3) is accurate for m = j > 1, that is, gkjRgkj+1.

Since R is (Q, g)-closed, so we get QkjRQkj+1, this yields that gkj+1Rgkj+2.

Hence our claim is true ∀ m ∈ N0.

By using (4.2) and (4.3), we can conclude that {Qkm} is also R-preserving se-

quence, that is,

QkmRQkm+1 ∀ m ∈ N0. (4.4)

If Qkm0 = Qkm0+1 for some m0 ∈ N0, then we can conclude that km0 is a coinci-

dence point of (Q, g).

Suppose to the contrary that Qkm 6= Qkm+1 ∀ m ∈ N0. With the help of (4.2),

(4.3), (4.4) and condition (3), we can see that

τ + F
(
d(gkm, gkm+1)

)
= τ + F

(
d(Qkm−1, Qkm)

)
≤ F

(
max

{
d(gkm−1, gkm),

d(gkm−1, Qkm−1), d(gkm, Qkm),
d(gkm−1, Qkm) + d(gkm, Qkm−1)

2

})
∀ m ∈ N0.

(4.5)

Denote A as

d(gkm−1, gkm), d(gkm−1, Qkm−1), d(gkm, Qkm),
d(gkm−1, Qkm) + d(gkm, Qkm−1)

2

If max{A} = d(gkm−1, gkm) ∴ gkm+1 = Qkm

then

τ + F
(
d(Qkm−1, Qkm)

)
≤F
(
d(gkm−1, gkm)

)
= F

(
d(Qkm−2, Qkm−1)

)
⇒ F

(
d(Qkm−1, Qkm)

)
≤F
(
d(Qkm−2, Qkm−1)

)
− τ
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≤F
(
d(gkm−2, gkm−1)

)
− 2 τ

=F
(
d(Qkm−3, Qkm−2)

)
− 2 τ

≤F
(
d(gkm−3, gkm−2)

)
− 3 τ

...

≤F
(
d(gk0, gk1)

)
−m τ.

Denote γm = d(gkm, gkm+1), with the help condition (3) we obtain

F (γm) ≤ F (γm−1)− τ ≤ F (γm−2)− 2τ..... ≤ F (γ0)−mτ (∀ m ∈ N).

taking m→∞ in above inequality, we obtain

lim
m→∞

F (γm) = −∞.

Which together with (F2) implies that

lim
m→∞

γm = 0.

If max{A} = d(gkm−1, Qkm−1) ∴ gkm+1 = Qkm

then, we have

τ + F
(
d(gkm, gkm+1)

)
≤F
(
d(gkm−1, Qkm−1)

)
⇒ τ + F

(
d(Qkm−1, Qkm)

)
≤F
(
d(Qkm−2, Qkm−1)

)
F
(
d(Qkm−1, Qkm)

)
≤F
(
d(Qkm−2, Qkm−1)

)
− τ

≤F
(
d(gkm−2, gkm−1)

)
− 2 τ

=F
(
d(Qkm−3, Qkm−2)

)
− 2 τ
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≤F
(
d(gkm−3, gkm−2)

)
− 3 τ

...

≤F
(
d(gk0, gk1)

)
−m τ.

Taking m→∞ in above inequality, we obtain

lim
m→∞

F (γm) = −∞.

By using (F2), we have

lim
m→∞

γm = 0.

If max{A} = d(gkm, Qkm) ∴ gkm+1 = Qkm

then

τ + F
(
d(gkm, gkm+1)

)
≤F
(
d(gkm, Qkm)

)
⇒ F

(
d(gkm, gkm+1)

)
≤F
(
d(gkm, Qkm)

)
− τ

=F
(
d(Qkm−1, Qkm)

)
− τ

≤F
(
d(gkm−1, gkm)

)
− 2 τ

=F
(
d(Qkm−2, Qkm−1)

)
− 2 τ

≤F
(
d(gkm−2, gkm−1)

)
− 3 τ

...

≤F
(
d(gk1, gk2)

)
−m τ.

Taking m→∞ in above inequality, we obtain

lim
m→∞

F (γm) = −∞.
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With the help of (F2), we have

lim
m→∞

γm = 0.

If max{A} =
d(gkm−1, Qkm) + d(gkm, Qkm−1)

2
,

then, we have

τ + F
(
d(gkm, gkm+1)

)
≤F

(
d(gkm−1, Qkm) + d(gkm, Qkm−1)

2

)

⇒ F
(
d(gkm, gkm+1)

)
≤F

(
d(gkm−1, Qkm) + d(gkm, Qkm−1)

2

)
− τ

=F

(
d(Qkm−2, Qkm) + d(Qkm−1, Qkm−1)

2

)
− τ

≤F

(
d(gkm−2, gkm) + d(gkm−1, gkm−1)

2

)
− 2 τ

=F

(
d(Qkm−3, Qkm−1) + d(Qkm−2, Qkm−2)

2

)
− 2 τ

≤F

(
d(gkm−3, gkm−1) + d(gkm−2, gkm−2)

2

)
− 3 τ

...

≤F

(
d(gk0, gk2) + d(gk1, gk1)

2

)
−m τ.

Taking m→∞ in above inequality, we obtain

lim
m→∞

F (γm) = −∞.
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Using (F2), we have

lim
m→∞

γm = 0. (4.6)

Now, we will show that {gkm} is a Cauchy sequence. To do this assume to the

contrary that {gkm} is not a Cauchy sequence. Using Lemma (3.1.1) and equation

(4.6) guarantees the existence of ε > 0 and two subsequences {gkmj
} and {gktj}

of {gkm} such that

d(gkm(j), gkt(j−1)) 6 ε < d(gkm(j), gkt(j))

and

j 6 m(j) 6 t(j), ∀ j ∈ N0

and

lim
j→∞

d
(
gkm(j), gkt(j)

)
= d
(
gkm(j)−1, gkt(j)−1

)
= ε. (4.7)

This implies that ∃ j0 ∈ N0 Such that d(gkm(j)−1, gkt(j)−1) > 0 ∀j > j0.

Since R is transitive, so we have

gkm(j)−1R/gkt(j)−1 and Qkm(j)−1R/Qkt(j)−1 ∀ j > j0.

Using condition (3), we have for all j > j0.

τ + F
(
d(Qkm(j)−1, Qkt(j)−1)

)
≤ F max

(
d(gkm(j)−1, gkt(j)−1), d(gkm(j)−1, Qkm(j)−1),

d(gkt(j)−1, Qkt(j)−1),
d(gkm(j)−1, Qkt(j)−1) + d(gkt(j)−1, Qkm(j)−1)

2

)
.

(4.8)
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Denote

d(gkm(j)−1, gkt(j)−1), d(gkm(j)−1, Qkm(j)−1), d(gkt(j)−1, Qkt(j)−1),

d(gkm(j)−1, Qkt(j)−1) + d(gkt(j)−1, Qkm(j)−1)

2
= B

If max{B} = d(gkm(j)−1, gkt(j)−1)

then, we have

τ + F
(
d(Qkm(j)−1, Qkt(j)−1)

)
≤F
(
d(gkm(j)−1, gkt(j)−1)

)
.

Since F is continuous, let j →∞ in above equation and using (4.7), we obtained

τ + F (ε) ≤ F (ε).

If max{B} = d(gkm(j)−1, Qkm(j)−1)

then, we obtain

τ + F
(
d(Qkm(j)−1, Qkt(j)−1)

)
≤F
(
d(gkm(j)−1, Qkm(j)−1)

)
=F
(
d(gkm(j)−1, gkm(j))

)
.

Since F is continuous, let j →∞ in above equation and using (4.7), we obtain

τ + F (ε) ≤ −∞.

If max{B} = d(gkt(j)−1, Qkt(j)−1)

then

τ + F
(
d(Qkm(j)−1, Qkt(j)−1)

)
≤F
(

(d(gkt(j)−1, Qkt(j)−1)
)

=F
(
d(gkt(j)−1, gkt(j))

)
.
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Since F is continuous, let j →∞ in above equation and using (4.7), we obtained

τ + F (ε) ≤ − ∞.

If max{B} =
d(gkm(j)−1, Qkt(j)−1) + d(gkt(j)−1, Qkm(j)−1)

2
,

then, we have

τ +F
(
d(Qkm(j)−1, Qkt(j)−1)

)
≤ F

( d(gkm(j)−1, Qkt(j)−1) + d(gkt(j)−1, Qkm(j)−1)

2

)

τ + F
(
d(Qkm(j)−1, Qkt(j)−1)

)
≤ F

( d(gkm(j)−1, gkt(j)) + d(gkt(j)−1, gkm(j))

2

)
.

Since F is continuous, let j →∞ in above equation and using (4.7), we obtained

τ + F (ε) ≤F
( ε+ ε

2

)
= F ( ε)

⇒ τ + F ( ε) ≤ F ( ε).

Since F is continuous, let j →∞ in above equation and using (4.7), we obtain

τ + F (ε) 6 F (ε), since τ > 0 we have a contradiction to the fact that {gkm} is a

Cauchy sequence.

Suppose that condition (4) is true. With the help of (4.2) we obtain gkm ⊆ Q(X).

Therefore, gkm is an R- preserving Cauchy sequence in K. By utilizing R-

completeness of K, ∃ l ∈ K Such that gkm → l.

As K ⊆ g(X), ∃ v ∈ X such that l = gv. Hence by using (4.2), we acquired

lim
m→∞

gkm = lim
m→∞

Qkm = gv. (4.9)

In order to prove that v is coincidence point of (Q, g), we will use three different

cases of condition (b).

First of all, suppose that Q is (g,R)-continuous. By utilizing (4.3) and (4.9),
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we get

lim
m→∞

Qkm = Qv. (4.10)

By utilizing (4.9) and (4.10), we get

Qv = gv.

This shows that v is a coincidence point of (Q, g).

Now suppose second case of (b) that is Q and g are continuous. Since X 6= 0

and g : X → X, then by using Lemma (3.1.2), ∃ B ⊆ X such that g(B) = g(X)

and g : B → B is one-one.

Define a mapping f : g(B)→ g(X) by

f(gb) = Q(b) ∀ gb ∈ g(B) where b ∈ B. (4.11)

Since g is one-one and Q(X) ⊆ g(X) implies that f is well- defined mapping. As

Q and g are continuous implies that f is also continuous. Now utilizing the truth

that g(X) = g(B). Because g(X) = g(B) we can rewrite condition (a) as

Q(X) ⊆ K ⊆ g(B), so that, without loss of generality, we can select a sequence

{km} in B and v ∈ B. By using (4.9), (4.11) and continuity of f , we have

Qv = f(gv) = f( lim
m→∞

gkm) = lim
m→∞

f(gkm) = lim
m→∞

Qkm = gv.

Finally assume that condition (iii) of (b) holds which implies that R|K is d-self

closed and (4.1) detain ∀ k, l ∈ X with gkRgl and QkR/Ql. As gkm ⊆ K, gkm is

R|K preserving due to (4.3) and with the help of (4.9) {gkm} → gv.

So that ∃ a subsequence {gkmj
} ⊆ {gkm} such that

[gkmj
, gv] ∈ R |K ⊆ R ∀ j ∈ N0. (4.12)
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Utilizing condition (b) and (4.12), we obtained

[Qkmj
, Qv] ∈ R|K ⊆ R ∀ j ∈ N0. (4.13)

Now, let q = {j ∈ N : Qkmj
= Qv}. If q is infinite, then {Qkmj

} has a subsequence

{Qkmjp
}, such that Qkmjp

= Qv. This implies that limp→∞Qkmjp
= Qv ∀p ∈ N.

By using (4.9), we have lim
m→∞

Qkm = gv. So we obtain Qv = gv.

If q is finite, then Qkmj
has a subsequence Qkmjp

such that Qkmjp
6= Qv ∀ p ∈ N.

With the help of (4.12), (4.13) and Qkmjp
6= Qv ∀ p ∈ N, we have

[gkmjp
, gv] ∈ R |K ⊆ R ∀ p ∈ N0 (4.14)

and

[Qkmjp
, Qv] ∈ R |K ⊆ R and Qkmjp

6= Qv ∀ p ∈ N0. (4.15)

Now with the help of (4.14), (4.15), proposition (4.1.1), and the fact that (4.1)

satisfied, we obtain

F
(
d(Qkmjp

, Qv)
)
≤ F

(
max

{
d(gkmjp

, gv), d(gkmjp
, Qkmjp

), d(gv,Qv),

d(gkmjp
, Qv) + d(gv,Qkmjp

)

2

})
− τ.

Denote

d(gkmjp
, gv), d(gkmjp

, Qkmjp
), d(gv,Qv),

d(gkmjp
, Qv) + d(gv,Qkmjp

)

2
= C

If max{C} = d(gkmjp
, gv)

then, we have

τ + F
(
d(Qkmjp

, Qv)
)
≤F
(
d(gkmjp

, gv)
)
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⇒ F
(
d(Qkmjp

, Qv)
)
≤F
(
d(gkmjp

, gv)
)
− τ

=F
(
d(Qkmjp−1

, Qkm)
)
− τ

≤F
(
d(gkmjp−1

, gkm)
)
− 2 τ

...

≤F
(
d(gkmjp−(m−1)

, gk2)
)
−m τ.

By using (4.9), (F2) and taking p→∞, we get

lim
j→∞

Qkmj
= Qv.

If max{C} = d(gkmjp
, Qkmjp

),

then

τ + F
(
d(Qkmjp

, Qv)
)
≤ F

(
d(gkmjp

, Qkmjp
)
)

⇒ F
(
d(Qkmjp

, Qv)
)
≤F
(
d(gkmjp

, Qkmjp
)
)
− τ

=F
(
d(Qkmjp−1

, Qkmjp
)
)
− τ

≤F
(
d(gkmjp−1

, gkmjp
)
)
− 2 τ

=F
(
d(Qkmjp−2

, Qkmjp−1
)
)
− 2 τ

≤F
(
d(gkmjp−2

, gkmjp−1
)
)
− 3 τ

...

≤F
(
d(gkmjp−(m−1)

, gkmjp−(m−2)
)
)
−m τ

By using (4.9), (F2) and taking p→∞, we get
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lim
j→∞

Qkmj
= Qv.

If max{C} = d(gv,Qv),

then, we have

τ + F
(
d(Qkmjp

, Qv)
)
≤F
(
d(gv,Qv)

)
⇒ F

(
d(Qkmjp

, Qv)
)
≤F
(
d(gv,Qv)

)
− τ

=F
(
d(gkm, Qkmj

)
)
− τ

=F
(
d(Qkm−1, Qkmj

)
)
− τ

≤F
(
d(gkm−1, gkmj)

)
− 2 τ

...

≤F
(
d(gkm−(m−1), gkmj−(m−2)

)
)
−m τ

By using (4.9), (F2) and taking p→∞, we get

lim
j→∞

Qkmj
= Qv.

If max{C} =
d(gkmjp

, Qv) + d(gv,Qkmjp
)

2

then, we obtain

τ + F
(
d(Qkmjp

, Qv)
)
≤F

(
d(gkmjp

, Qv) + d(gv,Qkmjp
)

2

)

⇒ F
(
d(Qkmjp

, Qv)
)
≤F

(
d(Qkmjp−1

, Qkmj
) + d(Qkm, Qkmjp

)

2

)
− τ
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≤F

(
d(gkmjp−1

, gkmj
) + d(gkm, gkmjp

)

2

)
− 2 τ

≤F

(
d(Qkmjp−2

, Qkmj−1
) + d(Qkm−1, Qkmjp−1

)

2

)
− 2 τ

≤F

(
d(gkmjp−2

, gkmj−1
) + d(gkm−1, gkmjp−1

)

2

)
− 3 τ

...

≤

(
d(gkmjp−(m−1)

, gkmj−(m−2)
) + d(gk2, gkmjp−(m−2)

)

2

)
−m τ.

By using (4.9), (F2) and taking p→∞, we get

lim
j→∞

Q(kmj
) = Qv. (4.16)

From (4.9) and (4.16), we obtain

Qv = gv.

Hence v is a coincidence point of Q, g in both cases either q is finite or infinite.

Now if (α) holds then gkm ⊆ L, and hence gkm is R-preserving Cauchy sequence

in L. Since L is R- complete. This implies that u ∈ L such that

lim
m→∞

gkm = u. (4.17)

Using equations (4.2) and (4.17), we obtain

lim
m→∞

Qkm = u. (4.18)

Now with the help of (4.3) ,(4.17) and continuity of g, we obtain

lim
m→∞

g(gkm) = g( lim
m→∞

gkm) = gu. (4.19)
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Utilizing (4.4), (4.18) and continuity of g to obtain

lim
m→∞

g(Qkm) = g( lim
k→∞

Qkm) = gu. (4.20)

As Qkm and gkm are R-Preserving due to (4.3), (4.4) and

lim
m→∞

Qkm = lim
m→∞

gkm = u.

Now using (4.18), (4.17) and condition (α2),

lim
m→∞

d(gQkm, Qgkm) = 0. (4.21)

Next, we will demonstrate that coincidence point of (Q, g) is u. Making use of

(4.3), (4.17) and the R- continuity of Q, we get

lim
m→∞

Q(gkm) = Q( lim
m→∞

gkm) = Qu. (4.22)

With the use of (4.20), (4.21), (4.22), we obtained

d(gu,Qu) = d( lim
m→∞

gQkm, lim
m→∞

Qgkm)

= lim
m→∞

d(gQkm, Qgkm) = 0

⇒Qu = gu.

This implies that u is a coincidence point of (Q, g).

Example 4.1.1.

Consider X = (0,∞) be enriched with the usual metric.

Define a sequence {πn} ⊆ X as follows

πn =
n(n+ 1)(n+ 2)

3
∀ n > 1.

Define a binary relation R on X by
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R = {(π1, π1), (πp, πp+1) : p ≥ 1}.

Consider Q : X → X in the following manner

Qk =


k, if 0 ≤ k ≤ π1;

π1, if π1 ≤ k ≤ π2;

πp +
(

πp+1−πp
πp+2−πp+1

)(
k − πp+1

)
, if πp+1 ≤ k ≤ πp+2, p = 1, 2, · · ·

and

define g : X → X as

gk = πp +
( πp+1 − πp
πp+2 − πp+1

)(
k − πp

)
, if πp ≤ k ≤ πp+1, p = 1, 2, ...

P roof . We can see that mapping Q is continuous. Also we can observe that

Q(πp+1) = πp.

gπp = πp.

Combining above, we have

Q(πp+1) = gπp.

Define F : (0,∞)→ R where F ∈ F by

F (β) = β +
1

β
.

Notice that if gkR/gl and QkR/Ql, then k = πp, l = πp+1 for some p ∈ N− 1.

Additionaly, ∀ n, t ∈ N such that t > n > 1, by using definition of (Fw,R)g, we get

τ + F
(
d(Qπt, Qπn)

)
≤ F

(
max

{
d(gπt, gπn), d(gπt, Qπt), d(gπn, Qπn),

d(gπt, Qπn) + d(gπn, Qπt)

2

})
.

(4.23)

First of all, we will check it for maximum.
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Let t = 7 , n = 5 ∴ πn = n(n+1)(n+2)
3

π7 = 168,π5 = 70,π2 = 8,π6 = 112,π4 = 40

d(gπn, gπt) = 98

d(gπt, Qπt) = 56

d(gπn, Qπt) = 30

d(πt,πn−1)+d(πn,πt−1)
2

= 85.

Denote

d(gπt, gπn), d(gπt, Qπt), d(gπn, Qπn),
d(gπt, Qπn) + d(gπn, Qπt)

2
= A. (4.24)

Here

max{A} = d(gπn, gπt) (4.25)

so equation (4.27) takes the form

7 + |Qπt −Qπn|+
1

|Qπt −Qπn
| =7 + |πt−1 − πn−1|+

1

|πt−1 − πn−1|

≤|gπt − gπn|+
1

|gπt − gπn|

Using values in above inequality, we get

7 + 72 +
1

72
≤ 98 +

1

98

⇒ 79.014 ≤ 98.010.

Consequently, 7 + F (d(Qk,Ql)) ≤ F (d(gk, gl)) for all k, l ∈ K such that gkR/gl

and QkR/Ql. As a result Q is an (Fw,R)g- contraction.

Theorem (4.1.2) does not guarantees the uniqueness of coincidence point. The

following theorem guarantees that coincidence point is unique.
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Theorem 4.1.3.

Suppose all hypothesis of theorem (4.1.2) are true except (α) and assume that gu

and gv are R - compareable for all distinct coincidence points u, v ∈coin (Q, g),

and one of Q and g is one-one, then a unique coincidence point of (Q, g) exists.

Proof .

The set coin (Q, g) is nonempty, because of above theorem.

Consider two elements u, v ∈ coin (Q, g), then by definition of coin(Q, g), we have

[gv, gu] ∈ R and Qu = gu, Qv = gv. This implies [Qu,Qv] ∈ R.

Now if gu = gv, we obtain Qv = gv = gu = Qu, and hence v = u, since one of Q

and g is one-one.

If gu 6= gv, then by utilizing condition (3) and Proposition (4.1.1), we obtain

τ + F
(
d(Qu,Qv)

)
6F
(
d(gu, gv), d(gu,Qv), d(gv,Qv),

d(gu,Qv) + d(gv,Qv)

2

)
=F
(
d(Qu,Qv)

)
.

Since τ > 0, so our assumption is false. Therefore a unique coincidence point of

(Q, g) exists.

Next theorem guarantees the existence of unique common fixed point.

Theorem 4.1.4.

Consider above theorem and add a condition that (Q, g) is a weakly compatible

pair, then a unique common fixed point of (Q, g) exists.

Proof .

Above theorem assures that the pair (Q, g) has a unique coincidence point. Let v

be the common coincidence point and suppose z ∈ X be such that

z = Qv = gv.

Since Q and g are weakly compatible, we acquired Qz = Qgv = gQv = gz. Which

implies z is a coincidence point of Q and g. Since v is unique implies z = v. Which

implies uniqueness of common fixed point. Since all the assumptions of Theorem

(4.1.3) are true implies the set coin (Q, g) is nonempty.
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On setting g = I we obtain the following theorem.

Theorem 4.1.5.

Consider a self mapping Q : X → X and let (X, d) be a metric space with a

transitive binary relation R. Assume that the subsequent conditions are fulfilled:

(1) ∃ k0 ∈ X such that k0RQk0,

(2) R is Q-closed,

(3) Q is an (Fw,R) -contraction,

(4) (α) ∃ a subset K of X such that Q(X) ⊆ K and K is R - complete,

(η) one of these conditions holds:

(i) Q is R-Continuous, or

(ii) R|K is d-self closed on condition that (2.1) with binary relation

holds ∀ k, l ∈ X with kRl and QkR/Ql.

Then a fixed point of Q exists. Furthermore, if

(e) [u, v] ∈ Fix(Q)⇒ [u, v] ∈ R.

Then a unique fixed point of Q exists.

Theorem 4.1.6.

Replace condition (e) of above theorem by following:

(e*) Fix(Q) is Rs-connected,

then Q has a unique fixed point.

Proof. Assume on contrary that Q has more than one fixed points say u and v

with u 6= v. Then there exist a path Rs ⊆ Fix(Q). As it is from v to u of length

q. Let us denote the path by {v0, · · · vq} such that vp 6= vp+1 for each p where

0 6 p 6 j − 1. If v = u, it is a contradiction. so that

v0 = v, vq = u and [vp, vp+1] ∈ R for each p (0 6 p 6 q − 1).
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As vp ∈ Fix(Q) implies that Q(vp) = vp for each p ∈ {0, 1, ...., q}. With the help

of condition (c), we obtain

τ+F
(
vp, vp+1

)
6 F

(
max

{
(vp, vp+1), (vp, vp+1), (vp+1, vp+1),

(vp, vp+1) + (vp+1, vp)

2

})
.

Since τ > 0, our supposition is not true. Hence Q has a unique fixed point.

4.2 Some Consequences in Ordered Metric Spaces

4.2.1. Ordered Metric Space

Let (X, d) be a metric space and (X,�) is an ordered set, then triplet (X, d,�) is

known as an ordered metric space.

4.2.2. g-Increasing

Consider a self mapping Q, g : X → X and an ordered set (X,�). If, for any

k, l ∈ X, gk � gl implies that Qk � Ql. Then Q is known as g-increasing.

Remark 4.2.1.

Notice that the notion of Q is g-increasing is equal to saying that � is (Q, g)-closed.

Taking R =� in Theorem (4.1.2) to (4.1.4) and with the help of Remark (4.2.1),

we obtain the result given below .

Corollary 3.

Consider a self mapping Q, g : X → X and an ordered metric space (X, d,�).

Assume that the conditions given below are satisfied:

(a) ∃ k0 ∈ X such that gk0 � Qk0,

(b) Q is g-increasing,

(c) ∃ τ > 0 and F ∈ F such that

τ+F
(
d(Qk,Ql)

)
6 F

(
max

{
d(gk, gl), d(gk,Qk), (gl, Ql),

d(gk,Ql) + d(gl, Qk)

2

})
.
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(d) ∃ a subset K of X such that Q(X) ⊆ K ⊆ g(X) and K is � -complete,

(e) either Q and g are continuous or Q is (g,�)-continuous; then coincidence

point of (Q, g) exists. Additionally we suppose that

(f) Qu and gv are �-compareable for all distinct coincidence points u, v ∈ coin

(Q, g), then pair (Q, g) has a unique coincidence point.

Furthermore, if Q and g are weakly compatible,then a unique common fixed

point of (Q, g) exists.

TakingR =� in Theorem (4.1.5) and with the help of Remark (4.2.1), we conclude

the result given below.

Corollary 4.

Consider an ordered metric space (X, d,�) and mapping Q : X → X. Assume

that conditions given below are fulfilled:

(a) ∃ k0 ∈ X such that k0 � Qk0,

(b) Q is � -increasing,

(c) ∃ τ > 0 and F ∈ F such that

τ + F (d(Qk,Ql)) 6 F
(
max

{
d(k, l), d(k,Qk), (l, Ql),

d(k,Ql) + d(l, Qk)

2

})
.

(d) K ⊆ X exists and Q(X) ⊆ K and K is � -complete,

(e) Q is �-continuous. Then Q has a fixed point. Furthermore, if

(f) u, v ∈ Fix(Q)⇒ [u, v] ∈� then a unique fixed point of Q exists.



Chapter 5

Conclusion

The work of Alfaqih et al. [16] on “Relation-theoretic coincidence and common

fixed point results under (F,R)g -contractions” is investigated in this thesis and

also the brief description of their work and achievements.

The objective of this research was to extend the results established by Alfaqih

et al.[16] in metric space. For this, the definition of Fw contraction with binary

relation R under g is formulated in metric space and extended the coincidence and

fixed point results using this definition. An example is also illustrated. We also

proved some consequences in ordered metric space using this definition. These

results might be valuable in solving particular results in fixed point theory using

metric space with some binary relation.
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